

Published on Web 08/28/2009

Effect of Highly Fluorinated Amino Acids on Protein Stability at a Solvent-Exposed Position on an Internal Strand of Protein G B1 Domain

Hsien-Po Chiu,[†] Bashkim Kokona,[‡] Robert Fairman,[‡] and Richard P. Cheng^{*,§}

Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, Department of Biology, Haverford College, Haverford, Pennsylvania 19041, and Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617

Received May 5, 2009; E-mail: rpcheng@ntu.edu.tw

Highly fluorinated amino acids can stabilize proteins¹ for potential application in various protein biotechnologies including therapeutics² and biosensors.³ Pioneering work to enhance protein stability by substituting natural hydrocarbon amino acids with fluoro-amino acids has mostly focused on helical proteins.^{1,4} However, the helicity of monomeric Ala-based peptides decreases upon replacing hydrocarbon amino acids with the corresponding fluorocarbon amino acids,^{5,6} suggesting that fluoro-amino acids may be more suitable for nonhelical secondary structures such as β -sheets. Indeed, substituting Val with trifluorovaline at a mostly buried β -sheet position stabilized protein NTL9 by 1.44 kcal·mol⁻¹·residue⁻¹,⁷ larger than most of the fluoro-stabilizations in helices.^{1a-i} Furthermore, many proteins used for therapeutics² and biosensors³ involve β -sheet proteins such as antibodies. Therefore, understanding the effect of fluoro-amino acids on β -sheet stability should facilitate the use of these amino acids in protein biotechnologies and bioactive compounds.⁸ As a first step, we report the effect of fluoro-amino acids at a solvent-exposed position in the β -sheet of protein G B1 domain⁹ (Figure 1A).

Figure 1. Panel A: ribbon diagram of protein G B1 domain⁹ (PDB ID: 1PGA) generated using the program Molscript.¹⁰ The guest position 53 (shown as black ball) on the internal strand 4, the immediate cross-strand position 6 on internal strand 1, and position 44 on edge strand 3 are labeled. Panel B: chemical structure of fluorocarbon and hydrocarbon amino acids: (S)-5,5,5',5',5',5'-hexafluoroleucine (Hfl), (S)-5,5,5',5'-tetrafluoroleucine (Qfl), (S)-2-amino-4,4,4-trifluorobutyric acid (Atb), (S)-pentafluorophenylalanine (Pff), glycine (Gly), L-alanine (Ala), L-leucine (Leu), (S)-2-aminobutyric acid (Abu), and L-phenylalanine (Phe).

An ideal host system-guest position combination for exploring sheet propensity should have the following two characteristics: (1) high sensitivity to mutation at the guest position and (2) minimal interference from tertiary interactions including lateral and diagonal cross-strand interactions. Sheet formation energetics of natural amino acids have been determined in two hosts: zinc finger¹¹ and protein G B1 domain (GB1).¹²⁻¹⁴ The internal strand guest position 53^{12,14} of GB1 is more sensitive than both the edge strand guest position 4413 of GB1 and the zinc finger host-guest system.11 Apparently, cross-strand interactions may not be significant in GB1 based on phage display studies.¹⁵ Many studies have focused on β -hairpins;¹⁶ however the stability of such motifs is determined by turn stability, intrinsic sheet propensity, and lateral and diagonal cross-strand interactions, making deciphering the intrinsic sheet propensity difficult in β -hairpins. Accordingly, we chose to investigate the GB1 system using the I6A T44A double mutant to minimize possible cross-strand interactions (Figure 1A).^{12,14,15} The solvent-exposed guest position 5312,14 on internal strand 4 was systematically changed to the residues in Figure 1B.¹⁷ All the proteins were monomeric in solution by sedimentation equilibrium;¹⁸ therefore intermolecular interactions should not affect the stability of the proteins.

Thermal denaturation of the proteins was monitored by circular dichroism spectroscopy (CD) at 222 nm (Figure S1).¹⁸ The high cooperativity of GB19a has enabled the unfolding of the helix (monitored at 222 nm) to represent the unfolding of the overall structure and thus β -sheet.^{14,19} There was some variation in the CD signal near 4 °C for the GB1 mutants, especially for GB1-Atb and GB1-Hfl.18 Such differences have been reported with minimal effect on GB1 bioactivity¹² or structure,^{12,14,19} and the variations were attributed to differences in aromatic contributions.¹² To confirm the structural integrity of GB1-Atb and GB1-Hfl, these two proteins along with GB1-Ala and GB1-Qfl were investigated by NMR.¹⁸ The sheet structure near the guest site for all four mutants was consistent with the native GB1 fold9 based on chemical shift deviations,^{18,20a} sequential HC $\alpha(i)$ -HN(*i*+1) NOEs,^{18,20b} and interstrand NOEs.¹⁸ Furthermore, the structure of the helix for all four proteins was also consistent with the native fold⁹ based on chemical shift deviations, 18,20a sequential HN(*i*)-HN(*i*+1) NOEs, 18,20b and sequential HC $\alpha(i)$ -HC $\beta(i+3)$ NOEs.^{18,20b} Thus, the different CD signals for GB1-Atb and GB1-Hfl may be due to different contributions from aromatic side chains,¹² but not the lack of sheet formation near the guest site or helix formation.

The thermal unfolding and folding of all the proteins were reversible (Figure S1).¹⁸ The CD data were converted to fraction unfolded protein (Figure 2). Data near the 50% unfolded for each protein were used to obtain the $T_{\rm m}$ (Table 1)¹⁸ and van't Hoff unfolding enthalpy and entropy,¹⁸ which were used to derive the relative unfolding free energy at 60 °C ($\Delta\Delta G_{\text{unfold 60°C}}$, Table 1).¹⁸ This temperature was chosen to minimize extrapolation of the data from the $T_{\rm m}$ for each protein¹² and to enable direct comparison with literature values at 60 °C.¹⁴ The $T_{\rm m}$ and $\Delta\Delta G_{\text{unfold }60^\circ\text{C}}$ for proteins with natural amino acids in the guest position were similar to literature values.¹⁴

The State University of New York.

[‡] Haverford College. [§] National Taiwan University.

Figure 2. Fraction unfolded plotted against temperature for GB1-based mutants. Panel A: GB1-Gly, GB1-Ala, GB1-Abu, GB1-Atb, GB1-Phe, and GB1-Pff. Panel B: GB1-Leu, GB1-Qfl, and GB1-Hfl.

Table 1. T_m and Relative Unfolding Free Energy at 60 °C $(\Delta \Delta G_{unfold 60^{\circ}C})$ of GB1-Based Proteins

protein ¹⁷	<i>T</i> _m (°C)	$\Delta\Delta G_{unfold 60^\circ C}$ (kcal \cdot mol ⁻¹) ^a	<i>T</i> _m (°C) ¹⁴	$\Delta\Delta G_{ ext{unfold }60^\circ ext{C}} \ (ext{kcal}\cdot ext{mol}^{-1})^{14}$
GB1-Gly	47.7 ± 0.2	-1.207	45.95	-1.21
GB1-Ala	59.2 ± 0.2	0	57.05	0
GB1-Abu	62.1 ± 0.6	0.387		
GB1-Leu	63.3 ± 0.7	0.513	62.47	0.45
GB1-Phe	67.5 ± 0.6	1.073	67.68	1.08
GB1-Atb	64.9 ± 0.9	0.737		
GB1-Qfl	64.9 ± 1.1	0.722		
GB1-Hfl	65.9 ± 0.9	0.806		
GB1-Pff	71.1 ± 0.8	1.410		

 $^{a}\Delta\Delta G_{\text{unfold 60^{\circ}C}}(\text{GB1-Xaa}) = \Delta G_{\text{unfold 60^{\circ}C}}(\text{GB1-Xaa}) - \Delta G_{\text{unfold 60^{\circ}C}}(\text{GB1-Xaa})$ Ala). $\Delta G_{\text{unfold 60°C}}(\text{GB1-Ala}) = -0.086 \text{ kcal} \cdot \text{mol}^{-1}$.

Introducing fluorines onto the amino acids at the solvent-exposed position 53 on internal strand 4 appears to stabilize GB1 based on $T_{\rm m}$ and $\Delta\Delta G_{\rm unfold\ 60^\circ C}$ (Table 1). Replacing Phe with Pff stabilizes GB1 by 0.34 kcal·mol⁻¹, whereas replacing Abu with Atb increases the stability by 0.35 kcal·mol⁻¹. Furthermore, replacing Leu with Qfl and Hfl stabilizes GB1 by 0.21 and 0.29 kcal·mol⁻¹, respectively. The increased stability upon introducing the fluorines may be due to hydrophobics,^{21a} sterics,^{21b,c} or both,^{21d,e} because linear correlations of $\Delta\Delta G_{\text{unfold }60^{\circ}\text{C}}$ with hydrophobicity (log *P*, *R* = 0.812) and size (volume, R = 0.891) were similar (Figure S6).¹⁸ Hydrophobic side chains can facilitate backbone desolvation.^{21f} In contrast, large side chains can limit available backbone conformations to favor sheet formation,^{21b} obstruct backbone-solvent interaction,^{21c} and shield cross-strand hydrogen bonds in the folded form.^{21f} The stabilization observed is less than that observed by Raleigh upon introducing trifluorovaline at a largely buried sheet position,⁷ most likely because the current study involves a solventexposed position, which cannot take full advantage of burying the highly hydrophobic fluorous side chains. Furthermore, energetics in the current study are reported at a higher temperature (60 °C versus 25°), which attenuates the values. The apparent discrepancy may also be due to the difference in the shape of the fluoro-amino acids investigated (i.e., β -branched versus non- β -branched). Nevertheless, the stability of GB1 increases upon introducing fluorines onto the amino acids at the solvent-exposed guest position 53 on internal strand 4. This is in sharp contrast to helix formation energetics (in Ala-based peptides), which become less favorable upon introducing fluorines by up to 1.72 kcal·mol^{-1.5,6} Overall, fluoro-amino acids may be worthwhile building blocks to explore for stabilizing β -sheet proteins, which are especially important for biotechnologies such as therapeutics² and biosensors.³

Acknowledgment. This work was supported by NYSTAR Watson Young Investigator Program, ACS Petroleum Research Fund

(R.P.C., #44532-G4), Kapoor fund (R.P.C.), the State University of New York at Buffalo (R.P.C.), National Science Council in Taiwan (R.P.C., NSC-97-2113-M-002-019-MY2), National Taiwan University (R.P.C.), and National Science Foundation (R.F., MCB-0211754).

Supporting Information Available: Experimental details for the synthesis and characterization of the proteins, sedimentation equilibrium, thermal denaturation, and NMR experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Tang, Y.; Ghirlanda, G.; Vaidehi, N.; Kua, J.; Mainz, D. T.; Goddard, W. A., III.; DeGrado, W. F.; Tirrell, D. A. *Biochemistry* **2001**, *40*, 2790.
 (b) Tang, Y.; Ghirlanda, G.; Petka, W. A.; Nakajima, T.; DeGrado, W. F.; Tirrell, D. A. Angew. Chem., Int. Ed. 2001, 40, 1494. (c) Tang, Y.; Tirrell, D. A. J. Am. Chem. Soc. 2001, 123, 11089. (d) Montclare, J. K.; Son, S.; Clark, G. A.; Kumar, K.; Tirrell, D. A. ChemBioChem 2009, 10, 84. (e) Charles, G. A., Kuntai, K., Hitch, D. A. Chemblochem 2009, 10, 94 (c)
 Bilgiçer, B.; Fichera, A.; Kumar, K. J. Am. Chem. Soc. 2001, 123, 4393.
 (f) Bilgiçer, B.; Kumar, K. Tetrahedron 2002, 58, 4105. (g)
 Lee, H.-Y.; Slutsky, M. M.; Anderson, J. T.; Marsh, E. N. G. Biochemistry
 2004, 43, 16277. (h)
 Lee, H.-Y.; Lee, K.-H.; Al-Hashimi, H. M.; Marsh, E. N. G. J. Am. Chem. Soc. 2006, 128, 337. (i)
 Woll, M. G.; Hadley, E. B.;
 M. G. J. Am. Chem. Soc. 2006, 128, 337. (i)
 Woll, M. G.; Hadley, E. B.; Mecozzi, S.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 15932. (j) Zheng, H.; Comeforo, K.; Gao, J. J. Am. Chem. Soc. 2009, 131, 18.
- (a) Kurtzman, A. L.; Govindarajan, S.; Vahle, K.; Jones, J. T.; Heinrichs, ; Patten, P. A. Curr. Opin. Biotechnol. 2001, 12, 361. (b) Vasserot, A. P.; V.; Patten, P. A. Curr. Opin. Biotechnol. 2001, 12, 361. (b) Vässerot, A. P.; Dickinson, C. D.; Tang, Y.; Huse, W. D.; Manchester, K. S.; Watkins, J. D. Drug Discov. Today 2003, 8, 118. (c) Tang, L.; Persky, A. M.; Hochhaus, G.; Meibohm, B. J. Pharm. Sci. 2004, 93, 2184.
 (a) Ramsden, J. J. J. Mol. Recognit. 1997, 10, 109. (b) Baird, C. L.; Myszka, D. G. J. Mol. Recognit. 2001, 14, 261. (c) Elia, G.; Silacci, M.; Scheurer, S.; Scheuermann, J.; Neri, D. Trends Biotechnol. 2002, 20, S19. (d) Cooper, M. A. M. & Burg, Direct 2002, 14, 515. (c) Skehl, Wülkins, F.
- (3)M. A. Nat. Rev. Drug Discov. 2002, 1, 515. (e) Shah, J.; Wilkins, E. Electroanalysis 2003, 15, 157.
- (a) Jäckel, C.; Seufert, W.; Thust, S.; Koksch, B. ChemBioChem 2004, 5, 717. (b) Jäckel, C.; Salwiczek, M.; Koksch, B. Angew. Chem., Int. Ed 2006, 45.4198
- (5) Butterfield, S. M.; Patel, P. R.; Waters, M. L. J. Am. Chem. Soc. 2002, 124, 9751
- (6) (a) Chiu, H.-P.; Suzuki, Y.; Gullickson, D.; Ahmad, R.; Kokona, B.; Fairman, R.; Cheng, R. P. J. Am. Chem. Soc. 2006, 128, 15556. (b) Chiu, H.-P.; Cheng, R. P. Org. Lett. 2007, 9, 5517.
- (7) Horng, J.-C.; Raleigh, D. P. J. Am. Chem. Soc. 2003, 125, 9286.
- (a) Meng, H.; Kumar, K. J. Am. Chem. Soc. 2007, 129, 12615.
 (b) Meng, H.; Kumar, K. J. Am. Chem. Soc. 2007, 129, 15615.
 (b) Meng, H.; Krishnaji, S. T.; Beinborn, M.; Kumar, K. J. Med. Chem. 2008, 51, 7303.
 (c) Gottler, L. M.; Lee, H.-Y.; Shelburne, C. E.; Ramamoorthy, A.; Marsh, E. N. G. ChemBioChem 2008, 9, 370.
 (d) Gottler, L. M.; de la Salud Bea, R.; Shelburne, C. E.; Ramamoorthy, A.; Marsh, E. N. G. Biochemistry 2008, 47, 9243.
- (a) Gronenborn, A. M.; Filpula, D. R.; Essig, N. Z.; Achari, A.; Whitlow, M.; Wingfield, P. T.; Clore, G. M. *Science* **1991**, *253*, 657. (b) Gallagher, T.; Alexander, P.; Bryan, P.; Gilliland, G. L. *Biochemistry* **1994**, *33*, 4721.
- (10) Kraulis, P. J. J. Appl. Crystallogr. 1991, 24, 946.
- (11) Kim, C. A.; Berg, J. M. Nature 1993, 362, 267.
- (12) Minor, D. L., Jr.; Kim, P. S. Nature 1994, 367, 660.
- (13) Minor, D. L., Jr.; Kim, P. S. Nature 1994, 371, 264.
- (14) Smith, C. K.; Withka, J. M.; Regan, L. Biochemistry 1994, 33, 5510.
- (15) Distefano, M. D.; Zhong, A.; Cochran, A. G. J. Mol. Biol. 2002, 322, 179. (16) (a) de Alba, E.; Rico, M.; Jiménez, M. A. Protein Sci. 1997, 6, 2548. (b) Griffiths-Jones, S. R.; Maynard, A. J.; Searle, M. S. J. Mol. Biol. 1999, Grintins-Jones, S. R.; Maynard, A. J.; Searle, M. S. J. Mol. Biol. 1999, 292, 1051. (c) Ramírez-Alvarado, M.; Kortemme, T.; Blanco, F. J.; Serrano, L. Bioorg. Med. Chem. 1999, 7, 93. (d) Syud, F. A.; Stanger, H. E.; Gellman, S. H. J. Am. Chem. Soc. 2001, 123, 8667. (e) Espinosa, J. F.; Syud, F. A.; Gellman, S. H. Protein Sci. 2002, 11, 1492. (f) Russell, S. J.; Blandl, T.; Skelton, N. J.; Cochran, A. G. J. Am. Chem. Soc. 2003, 125, 388. (g) Tatko, C. D.; Waters, M. L. J. Am. Chem. Soc. 2004, 126, 2028.
- (17) The protein sequences were based on the protein G B1 domain I6A T44A mutant with the guest position at residue 53. The proteins were named by prefixing the three-letter code of the amino acid at the guest position with "GB1-"; protein GB1-Ala would have an Ala at the 53 position of the protein G B1 domain I6A T44A mutant. (18) See Supporting Information.
- (19) Merkel, J. S.; Sturtevant, J. M.; Regan, L. Structure 1999, 7, 1333.
- (20) (a) Wishart, D. S.; Sykes, B. D.; Richards, F. M. Biochemistry 1992, 31, 1647. (b) Wüthrich, K. NMR of Proteins and Nucleic Acids; John Wiley & Sons: New York, NY, 1986.
- (21) (a) Yang, A.-S.; Honig, B. J. Mol. Biol. 1995, 252, 366. (b) Street, A. G.;
 Mayo, S. L. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9074. (c) Bai, Y.;
 Englander, S. W. Proteins: Struct., Funct., Genet. 1994, 18, 262. (d) Otzen, D. E.; Fersht, A. R. Biochemistry 1995, 34, 5718. (e) Koehl, P.; Levitt, M. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12524. (f) Avbelj, F.; Baldwin, R. L. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1309.
- JA903631H